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This article gives a very short review of CWI Tract 46. This tract reflects the
Ph.D.-work done by the author during the period 1983-1987 at CWI, at the
Department of Numerical Mathematics.

Consider the flow field over an arbitrary aerodynamic body, for instance the
wing of an aircraft. We are interested in calculating the properties of the flow
field at all points in the flow. These properties are described by the pressure
(p), the density (p), and the velocity (v=(»,,v,,v3)) in the field. The reason for
calculating the flow properties throughout the flow is that it allows us to com-
pute (among other things) the pressure distribution on the body, and thus the
aerodynamic forces (lift and drag) and moments of the body (useful for an air-
craft). For complex configurations, computational fluid dynamics (CFD) is the
only tool to compute such flow fields.

In [3] 1t 1s assumed that the fluid 1s an inviscid, non-heat-conducting, perfect
gas, without body forces. Then, in two dimensions, the principles of mass and
energy conservation and Newton’s second law result in the Euler equations, a
hyperbolic system of nonlinear conservation laws

0t 0x yCh

where (x,y) are the Cartesian coordinates, ¢ denotes the time,
- T " .

q=(p,pv,,pv2,E)", a function of ¢, x and y, 1s the unknown state vector of con-

servative variables. For the perfect gas, E, the energzy per unit volume, 18

related to the vamnables p,p and v as E=p/(y— 1)+ p(¥] +3%)/2, where y=1.4

1s the ratio of specific heats. The vector functions f and g are given by

flqQ) = (pv1, pri+p, privy, (E+p)py)’, and
g(q) = (pvy, pvi1y, pv3+p, (E+p)ry).
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[0 make the computation for a steady (1.e. time-independent) flow, the Euler
equations for the continuous unknown functions, are discretised (1.e. written as
a large system of nonlinear algebraic equations) in the following way. For the
specific problem of interest, e.g. flow 1n a channel, physical space i1s subdivided
in a finite number of disjoint quadrilateral ‘control volumes’ (see Figure 1) and
the numerical approximations of the unknown variables are represented by
their mean values over these small volumes. The flux at a control volume
boundary represents the mass, momentum and energy transported per unit of
time across that boundary. The discrete equations are obtained by the require-
ment that the total flux 1s zero for each such control volume. Thus, we obtain
a nonlinear system to solve, in which there are 4 unknown quantities per con-
trol volume. A space discretization by N control volumes results in 4N
unknown quantities and 4N algebraic equations.

A simple way to solve the large system of nonlinear algebraic equations is
the Gauss-Seidel relaxation method. In this method all volumes are scanned
one by one in some prescribed order and at each control volume visited the 4
unknown quantities are changed simultaneously by solving the 4 corresponding
nonlinear equations by the Newton-Raphson method (local linearization). This
iteration process 1s repeated until the solution of the large system has been
obtained at a certain prescribed accuracy level. A disadvantage of the Gauss-
Seidel method is that many iterations (O(N?)) are necessary. Because of the
local nature of the Gauss-Seidel method (the equations are only solved locally)
short wavelength error components (with respect to the meshwidth), present in
a current 1terand, are damped efficiently but the damping of error components
with a long wavelength 1s only marginal. For a grid with a typical meshwidth #
the wavelength of a short wave 1s O (/) and of a long wave is O(1/h).

To accelerate the convergence of the Gauss-Seidel method, coarser grids (i.e.
subdivisions 1n control volumes) are constructed recursively (see Figure 1). A
coarser grid 1s obtained from a finer grid by assembling 4 fine grid control
volumes into a single coarser grid volume. The discrete equations for the
coarser grids are obtained in the same way as for the finest grid.

The reason for constructing coarser grids stems from the observation that a
long wavelength error component (with respect to the meshwidth of the finest
grid) 1s a short wavelength error component with respect to the meshwidth of a
sufficiently coarser grid; the typical meshwidth of a coarse grid is two times the
typical meshwidth of the next finer grid. As a consequence, on a certain
coarse grid, the Gauss-Seidel relaxation method damps efficiently those long
wavelength error components (with respect to the meshwidth of the finest grid)
of which the wavelength is short with respect to the meshwidth of that particu-
lar coarse grid. This 1s the Multi-Grid i1dea which has been established in the
seventies by the pioneering work of A. Brandt and others [1,2]. Hence, in the
multigrid method, relaxations are not only performed on the finest grid but
also on the coarser grids in order to dampen al/l error components efficiently.
In the multignnd method, operators are necessary to exchange information
between the grids at different levels. These operators are called prolongation
operators (from a coarse to a next finer grid) and restriction operators (from a
fine to a preceding coarser grid).
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FIGURE 1. Illustration of the multi-grid method: the nested sequence
of grids and the corresponding solutions (pressure distribu-
tions of a flow field) obtained during the multi-gnd pro-
cedure.

The main advantage of multigrid over other acceleration techmques is the
fact that the rate of convergence 1s independent of N, the size of the system to
be solved. In fact, only a few iterations are sufficient to obtain a solution on
the finest grid up to truncation error accuracy; due to discretization errors it 1s
senseless to converge below truncation error accuracy. Another advantage of
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the multigrid method is that it can be used as a continuation process to obtain
a good esumation of the solution on the finest grid; start the Gauss-
Seidel relaxation on the coarsest grid, prolongate the solution to the next finer
grid and apply the multigrid method on that grid. Repeat this process until the
finest grid is reached. This continuation process is called nested iteration or the
tull multigrid method (FMG). -

Figure 1 shows the solution on the several grids obtained during the full
multigrid method. The flow is a supersonic flow (the Mach number at the inlet
1s 1.4) in a channel with a 4% thick circular arc bump. We see from the pres-
sure distributions that strong oblique shocks are present in the flow field. A
solution on a certain grid is depicted just before prolongation to a next finer
grid. The solution on the finest grid is obtained with an amount of work (CPU
time) equivalent to about 10 Gauss-Seidel relaxations on the finest grid. So far,
such an efficiency in solving the steady Euler equations has never been
obtained before.
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